**Ex. 3. Show that the set $\{1, \omega, \omega^2\}$, where ω is an imaginary cube root of unity forms a finite abelian group under multiplication.

(Bundelkhand 79; Kanpur 84, 80; Lucknow 81, 79;

Rohilkhand 82, 80)

Solution. Cube roots of unity are obtained by solving the equation $x^3=1$ or $x^3-1=0$ or $(x-1)(x^2+x+1)=0$

$$x=1, x=\frac{-1\pm\sqrt{(1-4)}}{2}=\frac{-1\pm i\sqrt{3}}{2}$$

Put
$$-\frac{1}{2} + \frac{i\sqrt{3}}{2} = \omega$$

Then
$$-\frac{1}{2} - \frac{i\sqrt{3}}{2} = \omega^2$$
 and $\omega^3 = 1$

Hence cube roots of unity are 1, ω and ω^2 .

All possible multiplications in the form of the composition table are given below (using the fact $\omega^3 = 1$, $\omega^4 = \omega^3$. $\omega = \omega$).

. 1	1	ω	wa	
1	1	ω	ω²	
ω	ω	w ²	1	
wa	ω ²	1	ω	

P₁: This table shows that multiplication is a binary operation on the given set as the product of any two elements of the given set under multiplication belongs to the set *i.e.* closure property holds.

P2: From the above table we find that

$$(1.\omega).\omega^2 = \omega.\omega^2 = 1$$
 and $1.(\omega.\omega^3) = 1.\omega^3 = 1.1 = 1$

i.e. $(1.\omega).\omega^2 = 1.(\omega.\omega^2)$ i.e. the associative law holds.

Pa: From the table it is evident that I is the identity.

are l, ω^2 and ω respectively, since

P₅: $x \cdot y = y \cdot x + x$, $y \in M$. where $M = \{1, \omega, \omega^2\}$.

Hence all the group postulates are satisfied and so M is a finite abelian group under multiplication.

torm a group!

*Ex. 4. Prove that the set {0, 1, 2, 3} is a finite abelian group of order 4 under addition modulo 4 as composition.

Solution. The composition table is

+4	0	. 1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

P₁: The above table shows that the sum of any two elements of the given set belongs to the set and therefore under the given operation the set is closed.

 P_a : (a+b)+c and a+(b+c) both denote zero or the least non-negative integer obtained on dividing the ordinary sum of a, b and c by 4 *i.e.* the composition is associative.

Pr: From the table it is evident that 0 is the identity.

P₄: The inverses of 0, 1, 2, 3, are 0, 3, 2, 1 since 0+0=0; $1+3=4\equiv 0 \pmod{4}$

 $2+2=4\equiv 0 \pmod{4}$; $3+1=4\equiv 0 \pmod{4}$

and which is also evident from the table.

(Note)

P₅: a+b=b+a for any two elements a, b in the given set. Hence all the group postulates are satisfied and so the given set is a finite abelian group of order 4 under the given composition.